
Run-Time Deep Virtual Machine Introspection
&

Its Applications

Jennia Hizver
Computer Science Department

Stony Brook University, NY, USA

Tzi-cker Chiueh
Cloud Computing Center

Industrial Technology Research Institute, Taiwan

March 1, 2014



Introduction

� Monitoring of virtual machines (VM) operations is 
important

� Traditional agent-based monitoring approach is 
replaced with new agentless monitoring approach 
for centralized management and administration of 
virtual machines (VM)virtual machines (VM)

� The agentless approach made possible by Virtual 
Machine Introspection (VMI)



Introduction
� VMI inspects contents of VM memory from an external 

VM to extract memory resident OS data structures and 
infers what a VM is doing

� VMI is especially beneficial for security tools
� Security monitoring tools (IDS, firewall) have been 

built using VMI

VM VM VM

VMI

Hypervisor

Data
Structures

Data
Structures



Introduction
� Semantic gap issue
� Native APIs are not available for VMI applications
� Internal OS data structures resident in VM memory 

must be reconstructed through reverse-engineering 
(particularly challenging for closed-source OSes)
Data structure layouts change from one OS version � Data structure layouts change from one OS version 
to another OS version

� Developers of VMI tools have used various 
application-specific techniques to obtain OS data 
structures from memory



Introduction 
� Apply a debugging tool on kernel memory of a 

running VM to interpret the states of the guest OS

� Make use of the kernel symbol table exported by 
Linux to interpret the states of the guest OS

� Inspect the OS source code to identify pointers to the 
key data structures and extracts relevant data 
structures during run-timestructures during run-time

� Place hooks inside the monitored OS to deliver real-
time events

� The above methods are application-specific and 
therefore are not extensible on a general basis



Introduction
� Need for a flexible and extensible framework that 

can be used by VMI application developers to 
rapidly obtain data structure knowledge without 
spending significant time

� We built a real-time kernel data structure 
monitoring system (RTKDSM) to automate monitoring system (RTKDSM) to automate 
development of VMI applications:
� Eliminates efforts spent on RE of data structures 

(data structure knowledge is built-in)
� Streamlines the data structure extraction methods
� Performs real-time monitoring of the extracted data 

structures to provide active monitoring capabilities



Requirements and Assumptions
� No modifications to the monitored OS
� Supports Windows and Linux OSes
� Supports HVM (hardware assisted virtualization)
� Data structures of the introspected OS are assumed 

to conform to original semantic and syntactic data 
structure layouts even in a compromised state

� Data structures are always memory-resident and 
are not paged to disk



Design & Implementation

1

• VMI 
Monitor 
makes a 
request

2-3

• Memory 
Mapping & 
Data 
Structure 
Search

4a – 4b

• Storing  
PFNs

5

• Setting 
Write 
Protection 
on pages

6-7

• Intercepting 
Writes to a 
Monitored 
Page

8

• Repeating 
Memory 
Analysis

9

• Reporting 
values to 
VMI 
Monitor



VMI Request
� The RTKDSM system operates in 2 modes: 

� Data structure identification and analysis
� Data structure monitoring

� In the identification mode, RTKDSM identifies data 
structures and extracts values of target fields

� In the monitoring mode, RTKDSM monitors changes 
to data structures and fields in real-timeto data structures and fields in real-time

� VMI request format:
(mode, data_structure_type, data_structure_offset, 
field_name1, field_name2, …, field_nameN)

� Examples:
� (identification, EPROCESS, 0x0, ‘’)
� (monitoring, EPROCESS, 0x000fabcd, ‘’)



Design & Implementation

1

• VMI 
Monitor 
makes a 
request

2-3

• Memory 
Mapping & 
Data 
Structure 
Search

4a – 4b

• Storing  
PFNs

5

• Setting 
Write 
Protection 
on pages

6-7

• Intercepting 
Writes to a 
Monitored 
Page

8

• Repeating 
Memory 
Analysis

9

• Reporting 
values to 
VMI 
Monitor



Data Structure Search
� Data structure search involves finding memory pages and 

offsets within pages where specific data structure 
instances reside in memory

� Our main design decision is to leverage an existing 
forensic framework to extract and analyze data structures

� Volatility - open source Python-based memory analysis 
framework for extraction and analysis of OS data framework for extraction and analysis of OS data 
structures designed to assist forensic investigators with the 
examination of memory and data structure analysis

� Rich OS data structure knowledge of Linux, Windows, 
MacOS (several versions)

� Volatility is designed to be expanded by plugins
� Plugin - performs a certain function, such as identifying a list of all 

active processes



Data Structure Search
� RTKDSM makes use of the existing Volatility libraries 

to perform data structure search and analysis
� Introduced modifications to Volatility to process VMI 

requests
� Batch vs. single data structure search
� Accesses a data structure directly in memory (without � Accesses a data structure directly in memory (without 

repeating data structure searches)



Design & Implementation

1

• VMI 
Monitor 
makes a 
request

2-3

• Memory 
Mapping & 
Data 
Structure 
Search

4a – 4b

• Storing  
PFNs

5

• Setting 
Write 
Protection 
on pages

6-7

• Intercepting 
Writes to a 
Monitored 
Page

8

• Repeating 
Memory 
Analysis

9

• Reporting 
values to 
VMI 
Monitor



Limitations
� Performance penalty due to induced page faults

� RTKDSM is likely to cause a significant performance 
impact on the guest OS by VMI monitors relying on 
monitoring of a large number of dynamic data 
structures that are constantly written to

� Extended the design to include 2 monitoring modes:
� “always on”
� “periodic polling” (using timing parameter T)

� “Always on” provides increased alertness (security)

� “Periodic polling “ may reduce performance overhead 
but increases the possibility of missing an update to a 
data structure



Performance Evaluation
� Testbed: Xen hypervisor, 2 Windows VMs, 512MB for each VM

� Assessed data structures related to the Windows processes listed below:

# Process Name Description
1 System First system process
2 smss Handles sessions
3 csrss Manages the graphical instruction sets
4 winlogon Handles the login and logout procedures4 winlogon Handles the login and logout procedures
5 services Manages the operation of starting and stopping 

services
6 lsass Enforces the security policy on the system
7 spoolsv Communicates with the printing interfaces
8 inetinfo A component of Microsoft Internet Information 

Services (IIS)
9 alg Involved in client-server network communications
10 PCMark05 A computer benchmark tool



Performance Evaluation

Name and 
Number of Data 

Structures

Describes

1 EPROCESS A running process and all the information about the process

2 ETHREAD A thread and contains all the information about the thread

For each process, we monitored 14 data structures (2 processes = 28 data 
structures, 4 processes = 56 data structures etc.)

1 TOKEN The security context of a running process

1 PEB Process Environment Block containing user-mode parameters

1 TEB Thread Environment Block containing user-mode parameters

2 KEVENT An event
2 KTIMER A timer

2 FILE_OBJECT An open instance of a device object

2 MMVAD Virtually contiguous memory regions in a process’s virtual address space



Performance Impact with PCMark05 
Benchmark in the “always-on” mode

1 VM running 2 VMs running



Performance Impact with Apache HTTP 
Benchmark in the “always-on” mode

1 VM running 2 VMs running



Performance Impact with Apache HTTP 
Benchmark in the “periodic polling” mode

T = 50 msec T = 5 msec



Effectiveness Evaluation
� To demonstrate the applicability of RTKDSM, we built 3 

tools:
� (1) an application whitelisting tool to allow only pre-

approved application binaries execute in the VM
� (2) a tool to detect privilege escalation attacks
� (3) a tool to track inter-VM data flows

� These tools will help to promote the creation of new VMI � These tools will help to promote the creation of new VMI 
tools using similar methods



Application Whitelisting
� Virtual desktop infrastructure (VDI) – users desktop 

environments are hosted on remote servers
� Managing user applications is a daunting task:

� Users increasingly install unapproved applications (personal, 
malicious, unlicensed)

� Agentless application whitelisting approach – monitoring 
software is installed in a management VM without requiring 
agents inside the monitored virtual desktopsagents inside the monitored virtual desktops

� Checks an executable file or a library module getting loaded 
into the address space of a user process against a whitelist

� Stops the program load operation if the executable file or 
library module is not in the whitelist

� Using the RTKDSM system, EPROCESS and PEB data 
structures were monitored to detect executable code loading 
events

� PCMark05 benchmark  - 2.6% - CPU suite, 1.3% - memory 
suite, and 3.8% - hard drive suite



Privilege Escalation Attack Detection

� Control data attacks (return addresses and function 
pointers)

� Non-control data attacks modify data structures directly in 
memory without using APIs (require in-depth semantic 
knowledge of the target data)

� We developed a novel defensive tool built on top of the 
RTKDSM systemRTKDSM system

� The tool focuses on attacks targeting authorization and 
authentication data assigned to a running process for 
privilege escalation

� Monitors EPROCESS and TOKEN data structures of 
running processes

� Run-time performance overhead was kept under 10%



Tracking Payment Card Data Flow

� Payment Card Systems present high value targets 
for hackers because they contain valuable 
credit/debit card data

� To improve security in payment processing systems, 
the Payment Card Industry (PCI) Security Standards 
Council developed and released the Payment Card 
Industry Data Security Standard (PCI-DSS)Industry Data Security Standard (PCI-DSS)

� Key pre-requisite for PCI DSS compliance –
construct the card data flow diagram for a payment 
processing network in the merchant environment

� Leveraged the RTKDSM system to track inter-VM 
data flows through network connection data 
structure identification and monitoring



Conclusions / Contributions

� VMI has evolved to monitor VMs in an agentless fashion
� VMI’s contribution is especially prominent in security 

tools
� Semantic gap presents the major drawback
� The RTKDSM system is the first VMI framework 

leveraging a forensic framework to automatically 
reconstruct and track changes in data structures in real-reconstruct and track changes in data structures in real-
time.

� RTKDSM reduces the complexity of developing VMI 
applications

� RTKDSM is flexible and extensible
� Effectiveness and practicality is demonstrated through 

development of 3 tools



Future Work

� Enable RTKDSM to automatically and dynamically 
choose between the “always on” and the “periodic 
polling” mode without affecting VMI applications’ 
performance and the timeliness of detection

� Investigate memory locations common to various 
data structure types and to add capabilities to the data structure types and to add capabilities to the 
RTKDSM system to dynamically choose the 
appropriate monitoring mode depending on the data 
structure type



Questions & Answers


